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Abstract—Mobile devices have emerged as the most popular platforms to access information. However, they have also become a
major concern of privacy violation and previous researches have demonstrated various approaches to infer user privacy based on
mobile devices. In this paper, we study the electromagnetic (EM) emission of a laptop that could be harvested by a
commercial-off-the-shelf (COTS) mobile device, e.g., a smartphone. We propose MagAttack, which exploits the electromagnetic side
channel of a laptop to guess user activities, i.e., application launching and application operation. The key insight of MagAttack is that
applications are discrepant in essence due to the different compositions of instructions, which can be reflected on the CPU power
consumption, and thus the corresponding EM emissions. MagAttack is challenging since that EM signals are noisy due to the
dynamics of applications and the limited sampling rate of the built-in magnetometers in COTS mobile devices. We overcome these
challenges and convert noisy coarse-grained EM signals to robust fine-grained features. We implement MagAttack on both an iOS
and an Android smartphone without any hardware modification, and evaluate its performance with 30 popular applications, 30 YouTube
videos, and 50 top websites in China. The results demonstrate that MagAttack can recognize aforementioned 30 applications with an
average accuracy of 98.6%, and identify which video out of the 30 candidates being played with an average accuracy of 97.5% and
visiting which website among the 50 candidates with an average accuracy of 90.4%.

Index Terms—Electromagnetic emission, mobile devices, user activity inference
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1 INTRODUCTION

Mobile devices have emerged as the most popular platforms
to assist daily activities and exchange information over the
Internet. According to Gartner [1], there will be more than
11 billion phones, tablets and laptops by the end of 2018.
Along with the rapid growth are the privacy concerns. The
proliferation of mobile devices has been a major concern in
the security and privacy communities. Various side channels
have been utilized for electrical-appliance usage analysis [2],
[3], [4], decryption of cryptographic computation [5], [6],
[7], and human-device activity recognition [8], [9], [10], [11].
These side-channel attacks, especially the last ones, draw
increasing attention due to the widespread use of mobile
devices and the increasingly intensive interaction between
human and smart devices.

Prior researches [9], [10], [11], [8], [12] have shown
several side-channel attacks that can sense human-device
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activities. Zhuang et al. and Zhu et al. utilize acoustic em-
anations to infer user keystrokes [9], [11]. Cai et al. use
motion sensors to infer user tapping and gesture inputs on
smartphones [10]. Clark et al. use the AC power consump-
tion to recognize the web page that a user browses on a
laptop [8]. However, Clark’s scheme requires modification
of the power outlet to measure the AC power consumptions
and can only work when the laptop is being charged.
Jana et al. sense user applications based on the footprints
of applications on memory usage [12], which is intrusive
since they need to log into the system and run a background
process in parallel with the target application.

In this paper, we investigate a new EM-based side-
channel attack for user activity inference. We propose
MagAttack, which detects and recognizes user activities by
tracking the EM emissions from the laptop’s CPU. Com-
pared with existing side-channel attacks, MagAttack is
non-intrusive and can be implemented on the COTS mobile
devices without any hardware modification. The underlying
principle of MagAttack is that, for an application, each
time when being launched, a fairly unique and consistent
sequence of CPU instructions are executed, as shown in
Fig. 1. When a CPU executes different instructions, it emits
various EM signals accordingly, which can be further cap-
tured by the built-in magnetometer in a mobile device for
privacy inference and hereafter we name this kind of attack
application guessing attack. MagAttack recognizes two levels
of application guessing attacks: (1) which application is
being launched, i.e., application recognition, and (2) what a
user is doing with the application, i.e., operation recognition.
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sys_open {

do_truncate()
do_sys_truncate()

 
EXPORT_SYMBOL()
}

App {

sys_open ()
sys_write ()

 
sys_close ()

}
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Fig. 1: The cause of EM emission from the laptop’s CPU. An application consists of various system calls, which are
composed of different instruction sequences and those instructions generate corresponding currents, and finally EM signals.

For example, we can figure out that a user is launching
a web browser and recognize which web page the user
is visiting. The significance of MagAttack lies in that it
can be the prerequisite of other user privacy violation at-
tacks. For example, when inferring user passwords through
keystrokes [9], [11], MagAttack can be employed first to
detect the launching of finical applications such as PayPal.
Besides, with the help of MagAttack, an adversary can
learn a user’s interests and habits by continuously tracking
the application usage of the user.

Inferring laptop user activity via the EM side channel is
promising yet challenging. First, both the location and orien-
tation of a smartphone affect the captured EM signals. The
former decides the initial EM amplitude as a result of the
earth’s magnetic field, and the latter determines the chang-
ing trend of the EM amplitude. Second, the magnetic sensors
in COTS mobile devices such as smartphones usually have
low sampling rates. Different from the sensors used in [6],
[7], [13], [4] with working frequency ranging from MHz to
GHz, a magnetometer in mobile devices can only measure
frequency up to 100 Hz. In other words, information from
high frequency signals is lost. Third, EM signals might be
inconsistent when the application changes, e.g., a website
is updated. Actually, many websites change their contents
and components such as pop-out advertisements on a daily
basis, and the captured EM signals are different as a result.

To address the aforementioned challenges, we first pro-
pose a reduction scheme to eliminate the influence from
the earth’s magnetic field and the ambient noise. Then,
for application launching detection, we design a sliding-
window based pre-screening algorithm for preliminary de-
tection, and a fine-grained Support Vector Machine (SVM)
classifier for refinement. For application recognition, we
employ Short Time Fourier Transform (STFT) and Principal
Component Analysis (PCA) for feature extraction, and use
a Random Forest (RF) classifier to achieve accurate recogni-
tion. For operation recognition, we use Wavelet Transform
and Multi-Resolution Analysis algorithm (MRA) to deal
with the more dynamic EM signals compared with that of
application recognition.

Application Scenario: we envision that MagAttack can
be used in public areas where an adversary sits near a victim
and is able to put his/her smartphone in the vicinity of the
victim’s laptop, e.g., attached on the backside of the table
where the laptop is put on, and draw no attention. The
adversary’s goal is to infer the victim’s laptop activities for
habit tracking or further privacy violation attacks such as
password inference. To the best of our knowledge, this is the

first side-channel attack to infer laptop user activities by the
means of CPU EM emissions. In summary, our contribution
includes:

• We analyze the underlying correlation between the
applications and the corresponding CPU EM emis-
sions. We propose to use a mobile device to infer user
activities on a laptop by tracking the EM emissions
from the laptop’s CPU.

• We investigate the distinctiveness of EM emissions
caused by various user activities, and elaborately
design MagAttack to differentiate them reliably.

• We implement MagAttack on commercial smart-
phones without any hardware modification, and
evaluate it with 30 popular applications, 30 YouTube
videos, and 50 top websites in China. The results
demonstrate that MagAttack can detect application
launching with a precision of 96.5% and a recall
of 91.8%, recognize 30 applications with an aver-
age classification accuracy of 98.6%, and classify 30
videos with an average accuracy of 97.5% and 50
websites with an average accuracy of 90.4%.

• Compared with our prior work [14], we enhance the
method for application/operation classification and
improve the recognition accuracy for both applica-
tions and operations. In addition, we demonstrate
the feasibility of our methods with a larger num-
ber of applications, shorter EM sample lengths (i.e.,
shorter collection time), and lower sampling rates,
and extending our methods to new scenarios such as
identifying which video the user is watching.

2 MEASURING EM EMISSION TO INFER APPLICA-
TION

In this section, we first introduce the built-in magnetome-
ter on mobile devices, and then show the feasibility of
MagAttack.

2.1 Magnetometer on Mobile Device

A magnetometer is an instrument that can measure the
direction, strength, and relative change of a magnetic field at
a particular location. The built-in magnetometer on mobile
devices is usually a Hall Effect sensor, which is small, cheap
and low in sensitivity (<= 5mV/mT ). The sampling rate
of the built-in magnetometer is configurable, which usually
varies from 4 Hz to 100 Hz for smartphones. Due to its low
cost and extensive functions, e.g., employed with gyroscopes

2

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 12,2022 at 18:12:08 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3092209, IEEE
Transactions on Mobile Computing

TABLE 1: Top 10 system calls invoked when different appli-
cations being launched.

Safari Chrome iTunes
workq kernreturn

(17.6%)
kevent
(24.0%)

workq kernreturn
(13.9%)

bsdthread ctl
(13.0%)

write
(12.4%)

geteuid
(9.5%)

stat64
(8.4%)

workq kernreturn
(6.6%)

stat64
(8.2%)

pread
(8.2%)

read
(6.1%)

bsdthread ctl
(7.9%)

madvise
(6.5%)

recvmsg
(5.8%)

getdirentires64
(4.9%)

openat
(3.5%)

stat64
(5.0%)

getattrlist
(4.7%)

getdirentires64
(3.0%)

bsdthread ctl
(4.3%)

madvise
(4.6%)

kevent qos
(2.9%)

psynch mutexdrop
(2.7%)

read
(3.5%)

mmap
(2.6%)

psynch mutexwait
(2.4%)

open nocancel
(3.2%)

geteuid
(2.5%)

mmap
(2.0%)

kevent qos
(2.9%)

and accelerometers for motion tracking, the magnetometer
is widely equipped on COTS mobile devices, and thus can
be a good alternative for EM measuring.

2.2 Application Launching

During application launching, the Launch Services frame-
work provides primary support. It sends a message to
WindowServer, which in turn calls fork() and execve()
(both are system calls) to run the requested application [15].
The requested application then, runs user functions in the
user space and invokes system calls to interact with the ker-
nel and access the hardware. Thus, an application executes
both user functions and system calls when being launched.

Upon user activity inference, we focus on the system
calls invoked during application launching. As shown in
Fig. 1, an application consists of a series of system calls.
Our hypothesis is that different system calls are invoked at
different frequencies for various applications. To validate it,
we use a system trouble-shooting tool dtrace[16] (available
on Linux, Mac OS, and Windows [17]) to capture the name
and time of the executed system calls when various ap-
plications (Safari, Chrome, and iTunes) are being launched
on the same laptop (a MacBook Air). The results in Tab. 1
demonstrate that the most intensive system call for Safari is
workq_kernreturn(), which accounts for 17.6%. While
for Chrome, it is kevent() that holds the largest portion
of 24.0%. For iTunes, workq_kernreturn() appears as
the most intensive system call as well but with a different
proportion of 13.9%. It confirms our hypothesis that the sys-
tem calls invoked when launching different applications, are
discrepant in both type and frequency, even for applications
of the same type.

2.3 From System Call to EM Emission

A system call is a wrapper function that consists of a se-
quence of instructions [18], as revealed in Fig. 1. As a result,
various system calls are composed of different instruction
sets and thus generate distinct CPU power consumptions.

A CPU chip consists of a large number of CMOS (Com-
plementary Metal Oxide Semiconductor) [19] transistors
arranged in a lattice form, which perform basic arithmetic,
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Fig. 2: EM signals are correlated with the system call traces
but distinct among applications. Note that the two traces
are normalized for illustration and the Y-axis represents the
frequency of system calls or the magnitude of EM signals.

logical, control and input/output operations specified by
the instructions. Energy consumption of the CPU heavily
depends on the power dissipation of the CMOS lattice. Av-
erage CPU power consumption [20] Pavg can be calculated
as follows:

Pavg =
CV (α)2AF (α)

2
(1)

where C represents the CMOS capacitance and is a function
of the transistor size and the wire length. V is the supply
voltage to CPU. A is the average switching frequency of the
CMOS transistors and F is the clock frequency. V and F are
further related to the CPU load α. When executing various
instructions, the CPU involves different numbers of CMOS
transistors and generate different loads, resulting in distinct
power consumptions as well as CPU currents. Since various
system calls are composed of different instruction sets, the
CPU currents for those system calls are likely to be diverse,
which contribute to distinct EM signals [21].

2.4 Feasibility of MagAttack

As various applications invoke different system calls when
being launched, the emitted EM signals shall correlate with
the system calls executed by the CPU but remain distinct
among applications. To validate our hypothesis, we cap-
ture the EM signals with an iPhone SE smartphone when
different user applications (Safari, Chrome and iTunes) are
launched on a MacBook Air laptop. During experiments,
the target laptop is placed on a round table with the attack
smartphone attached on the backside to draw no attention,
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Fig. 3: Workflow of MagAttack, which detects application launching, recognizes user activities based on EM signals
collected by mobile devices in the target laptop’s vicinity.

as shown in Fig. 7. The detailed information of the smart-
phone and the laptop is depicted in Tab. 2 and Tab. 3 in
Sec. 5. Meanwhile, we use dtrace to capture the name of the
executed system calls and the time they are being called in
microsecond granularity.

Since the system call is recorded in microseconds while
the EM signal is recorded in 10-millisecond granularity (the
sampling rate of the iPhone SE magnetometer is 100 Hz),
we transform the system call trace into a time-versus-
number histogram. The transformed trace is a two-column
matrix E = [~t;~n], where vector ~t records time units in 10-
millisecond granularity, and vector ~n records the number
of system calls during that time unit. Then, we align the
magnetic trace with the system call trace by shifting the
former one so that the two traces have maximal correlation
coefficient. We plot the logarithmic system call traces and
the EM signals in Fig. 2 (both are normalized for illustra-
tion), from which we can observe that:

• EM signals show strong resemblance to the system
call traces captured at the same time, e.g., the system-
call-intensive moment also has a high EM magni-
tude.

• EM signals demonstrate distinct patterns among ap-
plications, even for those of the same type: Safari
and Chrome, e.g., the EM signal of Chrome is more
dynamic and has more peaks compared with that of
Safari.

These findings shed light upon inferring user activities
on laptops via EM signals captured by nearby mobile de-
vices. Since various user activities invoke different system
calls, the resulting CPU power consumptions cause varying
EM signals, which are distinct and associated with the
activities and thus in turn can be utilized to conduct user
activity inference.

3 THREAT MODEL

In this section, we present the threat model of MagAttack.
Since the adversary’s goal is to infer user activities on user’s
laptop without his awareness, we consider the following
attack scenario: in a public area such as a library, a target is
using his laptop. The adversary sits near to him, and tries to figure
out what the target is doing on the laptop (e.g., what applications
the target launches and what operations the target performs). In
such a scenario, we assume that the adversary has following
abilities.

Vicinity to Target Laptop. We assume the adversary’s
mobile devices can be in the target laptop’s vicinity, e.g.,
attached on the backside of the table where the laptop is put
on, and draw no attention.

Algorithm 1: Earth Impact Reduction
Input: mag = {magx(t),magy(t),magz(t)}, t = 1 . . . n:

three-dimensional signals
Output:

• M = M(t), t = 1 . . . n : aggregated signals.
• Mnorm = Mnorm(t), t = 1 . . . n: aggregated and

normalized signals.

1 M = mag
2 for i ∈ {x, y, z} do
3 Mi = Mi − avg(Mi) // centralization

4 for t ∈ [1, 2, . . . , n] do
5 M(t) =

√
Mx(t)2 +My(t)2 +Mz(t)2 //

aggregation

6 Mnorm = M−min(M)
max(M)−min(M)

// normalization

No Target Laptop Access. We assume that an adversary
may target at any users of her choices, but she has no direct
access to the target laptop. She cannot physically touch/see
the screen, or install a malware.

No User Interaction. The adversary cannot ask users
to perform any operations, such as pressing a button or
running a specific application.

With the above assumptions, the adversary can launch
application guessing attacks, i.e., guessing which applica-
tion is being launched and what is the very operation of a
user when using the application. Both attacks can violate
the privacy of users and can be the first step of other severe
attacks such as keystroke inference [9], [11].

4 MAGATTACK DESIGN

4.1 Overview
To infer user activities, the adversary first puts her mobile
device in the target laptop’s vicinity and draws no attention.
Then, the attack device collects the electromagnetic emis-
sions from the laptop’s CPU, based on which MagAttack
detects application launching, recognizes running applica-
tions, and figures out user operations, as shown in Fig. 3.

4.2 Launching Detection
In this subsection, we elaborate how to detect the launching
process of an application, as the first step of user application
recognition.

4.2.1 Earth Impact Reduction
Due to the impact of the earth’s magnetic field, the cap-
tured EM signals are geo-spatial dependent. Even for an
application launched on the same laptop but with different
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(a) 3-dimensional EM signals (set-
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(b) 3-dimensional EM signals (set-
ting 2).
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Fig. 4: Before vs. after earth impact reduction. Setting 1 and 2 refer to two different geo-spatial locations and laptop-
smartphone orientations for launching the same application.

geo-spatial locations or laptop-smartphone orientations, the
EM signals can vary a lot. As shown in Fig. 4(a) and
4(b), the 3-dimensional EM signals at two different loca-
tions/orientations differ in values on the axis of x, y, and
z. MagAttack shall eliminate the earth impact to achieve
location/orientation-free attack.

The mobile device sensor records surrounding EM sig-
nals in three dimensions (x, y, z). The initial EM magnitude
of each axis depends on the location of the mobile device,
and the changing trend lies with the laptop-smartphone ori-
entation. To eliminate the impact of location and orientation,
we utilize the relative change of the EM signals instead of
the original data. We assume this change is caused by the
launching and thus is consistent with the same application
regardless of positions/orientations.

To achieve it, we first centralize the magnetic magnitude
of each axis to resolve its relative change to the earth’s
magnetic field, and then aggregate and normalize the rel-
ative changes in all three axes, as shown in Algorithm 1.
As a result, we can see from Fig. 4 that after earth impact
reduction, the 1-dimensional normalized signals under two
different settings become more similar and can be further
identified as the same one, as discussed later. In addition,
to eliminate the ambient EM interference caused by the
running applications on the attack device, we let it run no
applications other than magnetic signal collection during
attacks.

Note that we pay no special attention to the ambi-
ent EM emissions from other electronic devices, since the
smartphone’s built-in magnetometer can only measure the
magnetic induction signals in the near field, which attenuate
quickly with distance (around several centimeters). As a
result, the magnetic signals from other electronic devices,
if not very close, may not affect MagAttack.

4.2.2 Pre-screening
EM signals usually remain stable when no application is
started but can vary significantly during the process of ap-
plication launching. To improve the accuracy and efficiency
of launching detection, we design a pre-screening algorithm
that uses a time window to scan through the EM signals and
filter out the time windows that are unlikely to contain the
start of an application.

As an application can start at any time, we detect the
high variances of the EM signals over a certain time period.
A smaller time window and moving step can achieve higher
accuracy at the cost of lower detection efficiency. To strike

the balance between accuracy and efficiency, we set the
time window to be 1 s and the moving step to be 0.1 s. In
addition, we utilize the Exponential Moving Average (EMA)
approach [22] to update the variance threshold during the
period without application launching:

δt+1 = (1− α)δt + α× V ar(t) (2)

where δt and V ar(t) are the threshold and the EM variance
at the time period t, respectively. α represents the degree
of weighting decrease and a larger α indicates a more
dominant current variance in updating the threshold. In
our implementation, we set α to be 0.1. A window Wt is
detected when its EM signal variance is substantially larger
than the threshold δt:

V ar(t) ≥ β × δt (3)

where β is the coefficient of the threshold. A larger β
indicates that fewer sliding windows will be detected. In our
implementation, we set β to be 3. Upon detecting a sliding
window with a large variance, we can further classify it with
a Support Vector Machine (SVM) based classifier.

4.2.3 Launching Detection
In addition to application launching, other user operations
on the laptop may also contribute to high variances of EM
signals. To address it, we utilize a SVM based classifier to
further refine the launching detection results.

As the CPU instructions involved with a launching op-
eration often take seconds to complete, a 1-second EM trace
may not hold enough features to differentiate launching
from other operations. Therefore, for each 1-second EM
trace detected by the pre-screening algorithm, we append
it with the subsequent k − 1 one-second EM traces. In
our implementation, we choose k to be 4 based on our
observation that the variance of EM signals becomes in-
distinctive after 4 seconds since we start the application.
For each k-second normalized EM time series, we smooth it
with the Wavelet reconstruction at level 4, and then employ
Short Time Fourier Transform and Principal Component
Analysis to extract a feature vector. Since we use the same
feature extraction techniques for launching detection and
application recognition, we defer to present the technical
details of feature extraction in the next subsection. Then, we
feed the feature vector of each k-second EM trace to a SVM
based binary classifier with a kernel type of the radial basis
function [23], whose output is whether it is the start of an
application. Combined with the pre-screening, MagAttack
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is able to detect application launching accurately and reli-
ably.

4.3 Application Recognition
After detecting the launching of an application, we aim at
figuring out what the application is.

4.3.1 Data Pre-processing
After launching detection, we obtain a number of k-second
time windows that contain the EM traces of application
launching. Hereafter, we use time window/interval to repre-
sent the EM trace contained in that time window/interval
for short. For these time windows, we perform two pre-
processing operations: window expansion and window align-
ment before feature extraction.

Window Expansion. To guarantee that the selected time
window contains sufficient information, even for applica-
tions that need a long time to initialize (e.g., more than 10
seconds), we append each aforementioned k-second time
window with the subsequent m − k one-second time win-
dows, wherem ≥ k. In our implementation, we choosem to
be 10. This expansion can help MagAttack achieve higher
accuracy by including more features during the launching
process.

Window Alignment. Due to the finite granularity of the
window sliding approach, the starting time of each window
deviates more or less from the ground truth. To reduce
the impact of deviations, we align these time windows in
two steps. First, we compute the centroid of these time
windows using the average Dynamic Time Warping (DTW)
scheme [24], which is the time window that has the mini-
mum averaged DTW cost to the others. Then, we use the
centroid as the base to shift each other time window in the
time series. As a result, each shifted time window has the
maximum correlation coefficient with the base signal and is
still m seconds.

4.3.2 Feature Extraction
We then extract a feature vector for each aligned time
window. We first divide a EM time window into over-
lapped time intervals and conduct Fast Fourier Transform
(FFT) on each interval, which extracts time-variant features
in the frequency domain. Then, we conduct the Principal
Component Analysis (PCA) [25] on the FFT result of each
time interval and obtain the first PCA component, which
aggregates features in different frequency scales. Finally, we
sequentialize the PCA component of each time interval to
construct a feature vector for application recognition.

Short Time Fourier Transform. For each aligned time
window, we divide it into time intervals using a sliding
window with an interval size of w and a step size of 0.5∗w .
Then, each time interval is zero padded to the length of
2 ∗ w, before conducting FFT to get the STFT spectrogram.
We calculate the abstract value of the FFT results and obtain
the first half. As thus, for each time window, we get a t × l
spectrogram matrix S, where t rows correspond to t time
intervals, and l columns are the FFT results of that time
interval. In practice, we set w = 320 milliseconds. Fig. 5
illustrates the STFT spectrograms of 3 Mac OS applications
(Microsoft PowerPoint, Skype and Mail), where the X-axis
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Fig. 5: STFT spectrum of EM signals reconstructed on the
first wavelet level for different applications.

represents the time interval, the Y-axis represents the fre-
quency, and the color represents the energy of the frequency.

Principal Component Analysis. We then use the PCA
to track the correlation of FFT results among different fre-
quencies, and combine them by extracting the first principal
component. We conduct PCA on the FFT results of each
time interval in three steps: data preparation, coefficient
calculation, and feature vector construction.

(1) Data Preparation. Let s be the number of time
windows. With STFT, each time window is transformed into
a spectrogram matrix with t rows. For each time interval,
we extract its FFT results from aforementioned spectrogram
matrices to construct a new interval matrix. In this way, we
build t interval matrices H1, H2, . . . ,Ht, and each matrix
has s rows.

(2) Coefficient Calculation. For each interval matrix Hi,
we calculate its principal component coefficient matrix Ci.
Each column of Ci contains coefficients for one principal
component and the columns are arranged in the decreasing
order of component variance. We then obtain the first prin-
cipal component ofHi, i.e., the first column of Ci, for feature
vector construction.

(3) Feature Vector Construction. We conduct PCA on
the spectrogram matrix S to build feature vector V . The ith

element of V is calculated as:

V (i) =
l∑

j=1

S(i, j) ∗ Ci(1, j) (4)

where l is the column number of the spectrogram matrix S
as well as the length of FFT results for each time interval.

In this way, for each m-second time window, we extract
a feature vector V with t elements, where t is the number
of time intervals that the time window is divided into. We
envision that this feature vector retains the time-varying
frequency features of the EM signals.

4.3.3 Application Classification
Given the feature vectors extracted from the training data,
we conduct application classification with supervised learn-
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Fig. 6: Level 1-4 reconstructed EM signals using the Wavelet MRA.

ing. To select the appropriate classification algorithm, we
compare 10 commonly-used classifiers in this paper, which
are 1) Logistic Regression, 2) Gaussian Naive Bayes, 3)
K-Nearest Neighbors, 4) Linear Discriminant Analysis, 5)
Quadratic Discriminant Analysis, 6) Decision Tree, 7) Sup-
port Vector Machine, 8) ExtraTrees, 9) Random Forest, and
10) Gradient Boosting. We choose these classifiers since
they are widely-employed in website/application/device
fingerprinting [26], [27], [28], [29] and we compare them to
select the most effective one. Based on the performance of
these classifiers (shown in Fig. 8(a)), we employ Random
Forest (RF) [30] as our classification method since it outper-
forms other classifiers. We assume the high performance of
Random Forest comes from the capability of dealing with
the high-dimension feature vector extracted by PCA and
avoiding overfitting.

4.4 Operation Recognition
In addition to application recognition, MagAttack attempts
a more fine-grained detection, i.e., operation recognition. We
analyze two typical scenarios: 1) webpage browsing, and 2)
video playing, and regard visiting different web pages or
playing different videos as different operations. However,
our method is not limited to these scenarios and can be
applied to other applications as well.

For operation recognition, we capture the EM signals
when an operation is being launched, and extract a feature
matrix from its EM signals. Specifically, we use Wavelet
Multi-Resolution Analysis (MRA) [31] to get the de-noised
signals atN Wavelet levels. Then, we extract a feature vector
from each of the N reconstructed signals using the same
approach in Sec. 4.3.2, and arrange the N feature vectors in
rows to construct a feature matrix. With the obtained feature
matrix, we use the same RF classifier in Sec. 4.3.3 to achieve
operation recognition.

4.4.1 Wavelet Multi-Resolution Analysis
Launching a user operation, e.g., opening a web page or
video, usually requires executing network-related CPU in-
structions over a short time interval, resulting in EM signals
with time-varying frequency characteristics. Especially, EM
signals generated by opening a web page are usually more
inconsistent than those generated by application launching.
The reason is that for applications, CPU instructions ex-
ecuted by different launchings are fairly consistent while
for web pages, they are likely to be various as a result of
dynamic contents, e.g., pop-out online advertisements.

To address it, we use the Wavelet MRA to de-noise
the EM signals of user operations at different granularity

scales before extracting time-frequency features. The insight
is that, although each time launching a user operation may
involve dynamic contents and thus different CPU instruc-
tions, the EM signals of the same operation are similar at a
coarser granularity scales with subtle differences at a finer
granularity. We analyze EM signals of different operations
at N granularity scales with N different weights, and N is
set to be 5 based on the Shannon entropy-theory [32]. In the
following, we elaborate the details of the employed MRA
approach.

Wavelet Decomposition. First, we decompose the EM
signals generated by operation launching with two comple-
mentary filters: a low-pass filter, which generates approxi-
mation coefficients, and a high-pass filter, which generates
detail coefficients. For an EM time series, we decompose
them iteratively from level 1 to level N , and get a coefficient
vector Dn as:

Dn = (an, dn, dn−1, dn−2, . . . , d1) (5)

where an contains the approximation coefficients at level n
and dn contains the detail coefficients at level n, with 1 ≤
n ≤ N .

Wavelet Reconstruction. Then, we reconstruct an ap-
proximation signal from level 1 to level N , respectively. For
each level n, we calculate the reconstructed signal by up-
sampling and convolution from level 1 to level n with the
approximation coefficient an. An illustration is provided in
Fig. 6, which shows an increasing order of denoising from
level 1 to level 4. After denoising, we extract a feature vector
for each of the N reconstructed approximation signals using
the same feature extraction approach in Sec. 4.3.2. Then, the
N feature vectors are combined in rows to form a feature
matrix for operation classification.

5 PERFORMANCE EVALUATION

To evaluate the performance of MagAttack, we have
conducted experiments with 30 popular applications, 30
YouTube videos, and 50 top websites in China across 60
days. In summary, the performance of MagAttack is:

• MagAttack achieves a precision of 96.5% and a
recall of 91.8% in application launching detection,
an average accuracy of 98.6% to recognize 30 appli-
cations, an average accuracy of 97.5% to classify 30
YouTube videos, and an average accuracy of 90.4%
to classify the 50 top websites in China.

• MagAttack can operate with little influence from
operating system, sensor model and sampling rate.
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Fig. 7: The experimental scenario of MagAttack. We keep
the attack device under the table to draw no attention. The
round table is 2.5 cm in thickness.

5.1 Experiment Setup
We conduct MagAttack in a lab with 2 laptops and 2
smartphones. The detailed settings are as follows.

Target Device. We use a MacBook Air laptop as the main
target device. In addition, we use a Lenovo T440p laptop
to evaluate the performance of MagAttack on various
operating systems. The detailed information of each target
device is shown in Tab. 2.

Attack Device. We use an iPhone SE smartphone as the
main attack device to capture the laptop EM emissions. In
addition, we use a Nexus 5 smartphone to evaluate the
performance of MagAttack with various attack devices.
The detailed information of each attack device is shown in
Tab. 3.

Attack Scenario. We utilize the attack smartphone to
record the EM emissions when the target laptop is launching
different applications or operations. The target laptop is
placed on a round table with the attack device attached
on the backside to draw no attention, as shown in Fig. 7.
The round table is 2.5 cm in thickness. Then, we acquire the
measurements from the built-in magnetometer and transfer
these EM measurements to a cloud server for further pro-
cessing.

Application/Operation. For application recognition, we
choose 30 popular applications available on Mac OS that
cover several popular categories such as productivity, busi-
ness, entertainment, tool, and social networking. For oper-
ation recognition, we take the video player GOM Player
and the web browser Chrome as two examples, and use
30 offline videos randomly downloaded from YouTube and
the top 50 web sites of China listed in Alexa [33]. For
the convenience of data collection, we use a Python script
to launch applications/videos/web pages iteratively. Each
application/web page is being launched for 10 s while each
video is being launched for 20 s, with a 5 s blank period
between two successive launchings. The reason why videos
are launched for a longer time is that it takes more time to
collect sufficient data for video recognition.

5.2 Metrics
We use precision and recall to evaluate the performance
of MagAttack on launching detection, and accuracy to

TABLE 2: Summary of experimental laptops.
Machine Type MacBook Air Lenovo T440p

OS Version Mac OS 10.10.5 Win 7 Home

Processor Intel Core i5
1.4 GHz

Intel Core i5
2.6 GHz

Memory 4-GB DDR3
1600 MHz

8-GB DDR3L
1600 MHz

TABLE 3: Summary of experimental phones.
Phone Type iPhone SE Nexus 5

OS iOS Android
Sensor Rate 100 Hz 50 Hz

evaluate the performance of MagAttack on application
recognition and operation recognition.

Precision. Precision is denoted as TP
FP+TP , where TP

represents the true positives, i.e., the number of times
that MagAttack correctly detects an application launching.
Similarly, FP refers to the false positives, the number of
times that MagAttack falsely classifies a time interval as an
application launching.

Recall. Recall is denoted as TP
FN+TP , where FN is the

number of time intervals that contain an application launch-
ing but are not detected by MagAttack.

Accuracy. For each application/operation, accuracy is
defined as the ratio of the number of correctly recognized
samples to the total number of testing samples. We use the
average of the accuracy for all applications/operations as
the final recognition accuracy of MagAttack.

5.3 Launching Detection Results
We first evaluate the launching detection performance
of MagAttack. In this set of experiments, each of the
30 applications is launched for 100 times, with differ-
ent laptop-smartphone geo-spatial locations and random
laptop-smartphone orientations. As a result, we have 3000
application launching events. To detect them, we first em-
ploy the pre-screening model to locate candidate time win-
dows that have high probabilities to contain application
launching events. The performance achieved by the pre-
screening is a recall of 96.1% but a precision of 43.2%, which
means a few false positives occur. To discard these false
positive candidates, we then use the SVM model to further
refine the pre-screening model decision, where we adopt
the 10-fold cross-validation scheme to avoid over-fitting.
Finally, their combined performance achieves a precision
of 96.5% and a recall of 91.8% for application launching
detection.

5.4 Application Recognition Results
After launching detection, we obtain a total of 3000 EM sam-
ples for 30 applications, each of which lasts for 10 seconds.
We then evaluate the application recognition performance
of MagAttack with these samples.

5.4.1 Overall Evaluation
To evaluate the performance of MagAttack on application
recognition, we first select the appropriate classifier and EM
sample length, and then conduct the overall performance
evaluation.
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Fig. 8: Performance of application recognition.

TABLE 4: Impact of EM Sample Length.
Sample Length Accuracy (%)

2 s 96.5
4 s 98.0
6 s 98.7
8 s 98.7
10 s 98.7

Classifier Choice. To select the appropriate classifier
for application recognition, we compare 10 commonly-used
supervised learning algorithms. They are 1) Logistic Re-
gression, 2) Gaussian Naive Bayes, 3) K-Nearest Neighbors,
4) Linear Discriminant Analysis, 5) Quadratic Discriminant
Analysis, 6) Decision Tree, 7) Support Vector Machine, 8)
ExtraTrees, 9) Random Forest, and 10) Gradient Boosting. In
this set of experiments, 20 EM samples of each application
are used and each EM sample length lasts for 10 s. We
employ the 10-fold cross validation to evaluate the perfor-
mance of classifiers since it can combine measures of fit and
thus derive a more accurate estimation for model prediction
performance. All the hyperparameters for each classifier
are determined by grid search. The results in Fig. 8(a)
demonstrate that all the classifiers show an accuracy above
0.9, with the classifier 9) Random Forest, 3) K-Nearest
Neighbors, and 4) Linear Discriminant Analysis being the
best 3 classifiers. In the following experiments, we employ
Random Forest (RandomForestClassifier from the scikit-learn
library [34]) since it shows the best accuracy. The used
hyperparameters are: n estimators = 1000, max features
= 1, random state = 666. Other hyperparameters are kept
as default.

EM Sample Length. A longer EM sample length may
achieve a better recognition accuracy at the cost of a longer
data collection time. To strike the balance of attack accu-
racy and cost, we investigate the appropriate EM sample
length for application recognition. We set the length of
aforementioned EM samples to be 2, 4, 6, 8 and 10 seconds,
and conduct the corresponding 10-fold cross validation,

respectively. From the results shown in the Tab. 4, we can
observe that the accuracy of MagAttack does not change
significantly as the length of the EM sample decreases. With
6-second EM samples, MagAttack can achieve comparable
performance with an average accuracy of 98.7% for recog-
nizing the 30 experimental applications. Even with 2-second
EM samples, MagAttack can still achieve an average ap-
plication recognition accuracy of 96.5%. In the following
experiments, we employ 6-second EM samples by default.

Overall Performance. With the RF classifier and the
appropriate EM sample length, we then evaluate the overall
performance of MagAttack for recognizing 30 applications.
In this set of experiments, we use 20 EM sample of each
application for training and 60 samples for testing (they
are never used for classifier selection). The detailed results
of application recognition are shown in Fig. 8(b), from
which we can observe that MagAttack achieves an average
accuracy of 100% when differentiating 5 and 10 applications,
99.3% for 15 applications, 98.5% for 20 and 25 applications,
and 98.6% for 30 applications. With the increasing of appli-
cations, the recognition accuracy is not obviously decreased.
Overall, MagAttack can achieve an average recognition
accuracy of 98.6% across the 30 experimental applications,
and the training overhead of a single application is 42 ms
on average.

5.4.2 Impact of Background Application
When recognizing a launched application, there might be
other applications running in the background, which gen-
erate EM emissions as well and thus may interfere with
the application recognition. To evaluate the impact of back-
ground applications, we train the classifier using samples
without background applications, and test it using samples
collected with one application running in the background.
We use 3 background applications in this set of experi-
ments: Microsoft Word, Microsoft PowerPoint, and Safari
that are operated by a user from time to time and have
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TABLE 5: Impact of Background Application.
Background Application Accuracy (%)

Microsoft Word 93.0
Microsoft PowerPoint 94.0

Chrome 94.0
None 98.6

TABLE 6: Impact of Sampling Rate.
Sampling Rate (Hz) Accuracy (%)

10 84.7
20 96.6
50 98.3
100 98.6

an average CPU workload of 2-3%. We assume those user-
involved applications may introduce more interference. The
results in Tab. 5 show that MagAttack is slightly impacted
by the existence of background applications. Nevertheless,
MagAttack can still achieve an average accuracy of 93.7%
when recognizing 30 experimental applications with one
background application.

5.4.3 Impact of Sampling Rate
The sampling rate of the default attack device iPhone SE
is 100 Hz. To investigate the impact of the sampling rates,
we test MagAttack by down-sampling the collected EM
samples to 10, 20 and 50 Hz, and conduct the corresponding
evaluation respectively. From the results shown in Tab. 6,
we can observe that the performance of MagAttack slightly
drops when the sampling rate decreases. However, with a
sampling rate of 50 Hz, MagAttack can achieve compa-
rable performance with an average application recognition
accuracy of 98.3%. Even with a sampling rate of only 20
Hz, MagAttack can still achieve an average application
recognition accuracy of 96.6%. It provides encouraging signs
that MagAttack can be launched even with smart devices
that have limited sampling rate capability.

5.4.4 Impact of Device Distance
Due to the limited sensitivity of the built-in magnetometer,
the captured EM signals become weak when moving the
attack device away from the laptop. To investigate the in-
fluence of the attack device placement, we vary the vertical
distance between the laptop and the phone. We train the
classifier with traces collected at a distance of 2.5 cm, and
test it with traces collected from various distances. Starting
from 1 cm, we gradually enlarge the distance between the
laptop and the phone with a step of 0.5 cm. The perfor-
mance of MagAttack at each distance is shown in Fig. 8(c),
from which we can see that within a distance of 1-3 cm,
MagAttack can achieve a high accuracy (> 94%). If the
attack distance is beyond this range, we consider to em-
ploy specialized hardware to enhance the signal reception
capability.

5.4.5 Impact of Application Version
Another factor that may affect the performance of
MagAttack is the application version. The update of an
application may change its involved instructions and thus
its EM patterns. To investigate the impact of application ver-
sions, we randomly choose 10 applications and download

TABLE 7: Summary of experimental application versions.

ID App Version
(training)

Version
(testing)

S Skype 7.59 5.8.0.945
L Slack 4.8.0 4.3.3
D DingTalk 5.1.15 4.7.27
N Netease Cloud Music 2.3.2 1.5.10
M QQ Music 7.1.2 6.3.5
T Thunder 3.4.1 3.2.6
W Wunderlist 3.4.21 3.4.20
C Chrome 72.0.3626.9 84.0.4147.89
B Baidu NetDisk 3.3.2 2.2.3
Q QQ 8.3.6 6.6.1

their old version to conduct experiments. The chosen appli-
cations and their experimental versions are summarized in
Tab. 7. During the experiments, we train the classifier with
data collected from current versions of these applications
and test the performance of MagAttack with data collected
from old versions of the 10 experimental applications. The
results shown in Fig. 8(d) reveal that 7 out of 10 applications
can be recognized with an accuracy of ∼100%. Overall,
MagAttack can achieve an average accuracy of 97.5% in
differentiating these 10 applications even the training and
testing samples are from different versions.

To further reduce the impact of application versions,
we assume that MagAttack can include more application
versions during the training process. Specifically, the adver-
sary can build an application library that contains common
applications and their popular versions, and use the data
from the library to train a comprehensive classifier. We
believe that this kind of overhead might be affordable for
adversaries who attempt to track the behaviors of others.

5.5 User Operation Recognition Results

In the experiments of operation recognition, each user op-
eration is launched for 100 times. For data collection, we
record a 10-second EM sample for each webpage-browsing
operation and a 20-second EM sample for each video-
playing operation.

5.5.1 Video Recognition Performance
For video-playing operation recognition, we collect 3000
samples from 30 YouTube videos across 5 days. We use 20
EM samples of each video for training, and use the rest for
testing. The results in Fig. 9(b) show the accuracy when
MagAttack classifies among different numbers of videos.
Specifically, MagAttack achieves an average accuracy of
100% when differentiating 5 videos, and 99.5% for 10 videos.
With the increasing of videos, the recognition accuracy
slightly decreases. Overall, MagAttack can achieve an av-
erage accuracy of 97.5% in differentiating all the 30 videos.

5.5.2 Webpage Recognition Performance
To evaluate the webpage-browsing recognition performance
of MagAttack, we collect 5000 samples for 50 web pages
across 3 days. The “Fresh Data” in Fig. 9(b) shows the accu-
racy when MagAttack classifies among different numbers
of web pages. Specifically, MagAttack achieves an average
accuracy of 100% when differentiating 5 web pages, and
97.8% for both 10 and 15 web pages. With the increasing of
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Fig. 9: Performance of user operation recognition.
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Fig. 10: Performance of application recognition on the Win-
dows laptop.

web pages, the recognition accuracy slightly decreases. Nev-
ertheless, MagAttack can still achieve an average accuracy
of 90.4% in differentiating all the 50 web pages.

In addition, we investigate the impact of data freshness
on the webpage-browsing operation recognition since web
pages may update their contents from time to time and thus
the data freshness may have impacts. We collect another 500
testing samples 20 days after collecting the training samples.
Based on which, MagAttack shows an average accuracy of
82.7% as revealed in “Old Data” in Fig. 9(b). The reason
accounts for the performance decrease is that most web
pages, unlike applications or offline videos, update their
page components on a daily basis. These modified web page
components impact the EM signals captured on different
days, and thus cause performance decrease.

5.6 Scalability of MagAttack

In addition to the performance of application and operation
recognition, we investigate the scalability of MagAttack on
various operating systems and attack devices. Specifically,
we utilize a target device with operating systems other than
Mac OS, and an attack device other than iPhone to perform
user application recognition.
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Fig. 11: EM signals collected using different phones.

5.6.1 Impact of Different Operating Systems
To evaluate it, we conduct experiments on a Lenovo T440p
laptop with a Windows OS. Similarly, we collect 50 samples
for each of the following 10 popular applications available
on Windows OS: PowerPoint (P), Word (W), Excel (E),
Chrome (C), Internet Explorer (X), Skype (K), KuGou (G),
Windows Media Player (R), Adobe Reader (A) and MAT-
LAB (B), and employ the 10-fold cross validation to evaluate
the recognition performance. The results shown in Fig. 10
demonstrate that MagAttack works well on the Windows
OS, with an average recognition accuracy of 99.0%. Thus, we
have reason to believe that MagAttack is OS-independent
and can attack laptops with different operating systems.

5.6.2 Impact of Different Attack Devices
To evaluate it, we use two different mobile phones, i.e., an
iPhone SE and a Nexus 5 in Tab. 3, to track the same laptop
at the same time. We collect 50 samples for each of the 10
applications and draw the EM signals of two applications
(Microsoft Word and VLC player) recorded by two smart-
phones in Fig. 11 for illustration. From the results we can
observe that EM signals of the same application recorded
by different smartphones are quite similar. To quantitatively
evaluate the impact of different attack devices, we train the
system using samples collected by one smartphone, and
test it with samples collected by the other device. Since
the iPhone SE has a sampling rate of 100 Hz while the
Nexus 5 only has 50 Hz, we down-sample the EM signals
collected by the iPhone SE to achieve the same sampling
rate. The classification results demonstrate that MagAttack
can achieve an accuracy of 99.3% in the aforementioned
case. Thus, we believe that MagAttack is independent on
the model of attack devices as well as the sampling rate of
magnetometers.

6 DISCUSSION

In this section, we discuss the defense countermeasure of
MagAttack, and the limitations of our system.
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6.1 Defense

We propose two defense strategies against MagAttack from
both the hardware and software perspectives.

Hardware-based Defense. One condition that enables
MagAttack is that the laptop CPU leaks EM emissions
which can be captured by a vicinal magnetic sensor. To
address it, the electromagnetic shielding on laptops can be
enhanced. For instance, the CPU and other vital components
can be shielded with metal films, which may reduce a
majority of the EM leakage.

Software-based Defense. The root cause of MagAttack
is that various instructions generate different EM signals
that in turn can be utilized to differentiate user activities. To
defend MagAttack, a group of stochastic instructions can
be executed by the CPU in the background, which may add
random noise to the EM signals generated by user activities,
thus interfere the recognition of MagAttack.

6.2 Limitations

Our implementation of MagAttack based on existing hard-
ware has three main limitations. First, the attack distance
between the laptop and the mobile device is close, in terms
of 3 centimeters. Due to the limited sensitivity of the built-in
magnetometer in the mobile devices on today’s market, the
captured EM signals from the COTS mobile device become
too weak after moving the mobile device further away from
the laptop. We envision that COTS mobile devices can be
equipped with better sensors in the future.

Second, with a smartphone, i.e., a single magnetic sensor,
our methods require to precisely align the phone with
the target device’s CPU. However, we assume it can be
mitigated by employing a sensor array as discussed by [21],
which can effectively enlarge the EM measurement area and
thus reduce the requirement of device alignment.

Third, our algorithms may need to be re-trained in
case of different CPU architectures or operating systems.
We envision that robust features across laptops of different
CPUs and various operating systems may be discovered in
the future.

Fourth, currently our method works when one appli-
cation or operation is performed at a time. We envision
that new techniques for recognizing concurrent multiple
activities may be developed in the future. We hope this work
can attract more effort from the community to explore this
field which has not been well studied yet.

7 RELATED WORK

Side-channel Attacks Based on EM Emissions. Pioneer
work using EM leakage as the side-channel usually re-
quires customized hardware to capture EM emissions [6],
[7], [13], [3], [4]. Genkin et al. extract the key of RSA soft-
ware implementation on a Lenovo laptop using a near-field
magnetic probe with a frequency of around 100 kHz [6],
[7]. Vaucelle et al. detect the existence of ambient elec-
tromagnetic fields using a magnetometer bracelet with a
frequency of up to 50 kHz [13]. Chen et al. detect the usage
of electrical appliances by monitoring the device electro-
magnetic interference (EMI) radiations with an expensive
EMI measurement equipment [3]. Chen’s scheme works

only when the laptop is electrically connected to a power
line interface, which is plugged in the wall outlet. Wang et
al. recognize the electrical appliance usage using a wrist-
worn magnetic sensor and a set of data acquisition device,
with a sampling rate of 16-bit resolution at 44.1 kHz [4]. In
comparison, MagAttack uses magnetometers in the COTS
smartphones with a sampling rate of around 100 Hz to
detect and recognize user activities on a vicinal laptop.
Biedermann et al. present a class of EM side-channel attacks
on computer hard drives using smartphone magnetic field
sensors [35], which detect what type of the operating system
is booting up or what application is being started based
on the ongoing operations of hard drives. However, Bieder-
mann’s scheme cannot work for applications without disk
operations. Furthermore, they haven’t presented the under-
lying principle that enables those attacks. In comparison,
MagAttack works for any user applications or operations,
and investigates the feasibility of such attacks from a view
of CPU instructions. Guri et al. present a covert channel that
can leak data from isolated, air-gapped computers to nearby
smartphones by controlling the magnetic fields emanating
from the computer by regulating workloads on the CPU
cores [36]. In comparison, MagAttack targets at inferring
user application/operation using the EM emissions from
the CPU when application/operation launched. Ning et al.
demonstrate a side-channel attack that sniffs mobile Apps
based on the correlation between magnetometer readings
and LED displays on smartphones [37]. One difference
between MagAttack and this work is that MagAttack
utilizes the EM emissions from the CPU caused by different
CPU instructions of various applications/operations while
this work employs the intra-device magnetometer readings
caused by different graphic designs of difference Apps.
Thus, Ning’s scheme works for coarse-grained user applica-
tions only but not fine-grained user operations. Matyunin et
al. propose to identify activities running on mobile devices
based on the reaction of intra-device magnetometer sensors
to CPU activity [29]. MagAttack differs from this work at
three aspects: 1) MagAttack targets at inferring inter-device
user applications/operations rather than intra-device ones,
2) MagAttack proposes to use the Wavelet MRA method to
deal with the dynamic EM signals of user operations which
outperforms simply PCA-based approach used in [29], and
3) MagAttack investigates the feasibility of such attacks
at a deeper level of CPU instructions rather than average
CPU loads (the former is the root cause of the latter).
Another related work of MagAttack is our prior work [14].
In comparison, this work enhances the method for appli-
cation/operation classification and thus improves the in-
ference accuracy. In addition, this work demonstrates the
feasibility of our methods with more applications, shorter
EM sample lengths (i.e., shorter collection time), and lower
sampling rates, and the applicability to new scenarios such
as identifying which video the user is watching.

Side-channel Attacks Using Mobile Devices. Prior
work has demonstrated a number of side-channel attacks
using the sensors in COTS mobile devices [38], [39], [10],
[40], [41]. Xu et al. and Schlegel et al. show side-channel
attacks using cameras [38] and microphones [39], respec-
tively. Cai et al. and Aviv et al. show that motion sensors in
mobile phones, such as accelerometers and gyroscopes, can
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be used to learn the user tapping and gesture input [10],
[40]. Jana et al. recognize web pages that a user browses by
tracking the memory footprint variations of the browser on
Android [12], which is intrusive since the attackers need to
login to the system as a process running in parallel with
the browser. These attacks are used to breach the privacy of
the mobile device user. In comparison, MagAttack breaches
the privacy of a laptop user. Zhang et al. exploit smartphone
magnetometers to recognize nearby household appliances
[41]. In comparison, MagAttack aims to infer information
regarding nearby laptop user’s activities.

Side-channel Attacks on Recognizing Laptop User
Activities. Prior work has exploited other forms of side-
channels than EM emissions for laptop user activity recog-
nition. Zhuang et al. and Zhu et al. use acoustic signals as
the side-channel information to infer user keystrokes [9],
[11]. Clark et al. utilize the AC power consumption of a
laptop to recognize the web page that a user browses [8].
Clark’s scheme requires the modification of the power outlet
for measuring AC power consumption. Lu et al. tap the
encrypted web traffic to recognize the web page that a
user browses [42]. In comparison, MagAttack uses EM
emissions as the side-channel information, which is non-
intrusive and can be implemented on the COTS mobile
devices without hardware modification.

8 CONCLUSION

In this paper, we propose MagAttack, which demonstrates
the feasibility of using a COTS mobile device to infer user
activities on a nearby laptop based on the EM side-channel
leakage from the laptop’s CPU. We implement MagAttack
on the COTS smartphones without hardware modification
and evaluate it with 30 commonly used applications, 30
YouTube videos, and 50 top popular web pages in China.
The experimental results show that MagAttack can conduct
launching detection, application recognition, and operation
recognition with high accuracy. Future directions include
designing specialized hardware to enlarge the detection
distance and exploiting robust features across various ap-
plication versions.
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