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Figure 1: (a) OISSR applies acoustic injection to alter the built-in MEMS gyroscope readings to control the lens motion in

OIS-supported cameras and further enables the sub-pixel alignments of multiple frames to facilitate merging into a super-

resolution image. (b) The top sub-figures show the original image, whereas the bottom sub-figures show the super-resolution

results obtained using the OISSR system

ABSTRACT

Multi-frame super-resolution methods can generate high resolution
images by combining multiple captures of the same scene; however,
the performance of merged results are susceptible to degradation
due to a lack of precision in image registration. In this study, we
sought to develop a robust multi-frame super resolution method
(called OISSR) for use on smartphone cameras with a optical image
stabilizer (OIS). Acoustic injection is used to alter the readings from
the built-in MEMS gyroscope to control the lens motion in the OIS
module (note that the image sensor is fixed). We employ a priori
knowledge of the induced lens motion to facilitate optical flow esti-
mation with sub-pixel accuracy, and the output high-precision pixel
alignment vectors are utilized tomerge themultiple frames to recon-
struct the final super resolution image. Extensive experiments on a
OISSR prototype implemented on a Xiaomi 10Ultra demonstrate
the high performance and effectiveness of the proposed system in
obtaining the quadruple enhanced resolution imaging.
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1 INTRODUCTION

Background: Software-based super-resolution is widely used in
smartphone cameras to overcome physical limitations on raw spa-
tial resolution. Single image super-resolution (SISR) algorithms [16,
29, 38] extract structure and texture components to enable the syn-
thesis of an interpolated image with matching weights to increase
resolution. However, SISR itself is an ill-posed problem, as evidenced
by the fact that it utilizes only the relationship between neighboring
pixels, which means that the augmented pixels are a fiction learned
from “experience” [12]. By merging multiple low-resolution obser-
vations of a given scene that were taken when handholding the
camera, multi-frame super-resolution (MFSR) methods generate re-
sults that are closer to the ground truth (i.e., greater realism) [12, 50].
Note that the performance of MFSR methods is mainly determined
by the precision of image registration and alignment accuracy at
the sub-pixel scale [2, 34, 35]. Unfortunately, image registration
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methods based solely on visual information are unable to achieve
robust sub-pixel accuracy in real-world scenarios [44], whichmakes
super-resolution results more like “denoising” with an accompany-
ing blurring of high-frequency details. Deep learning-based SISR
and MFSR methods [4, 12] synthesize high frequency details based
on knowledge learned from a training dataset. However, the perfor-
mance of these supervised learning approaches is unstable due to
their strong dependence on the distribution of the training datasets.

Our system: In the current study, we develop a robust multi-
frame based approach to super-resolution imaging capable of out-
standing accuracy in aligning multiple captures from smartphone
cameras. Specifically, we employ the lens-shift optical image sta-
bilization (OIS) module commonly found in smartphone cameras
to enable accurate control over lens motion and further employ a
priori knowledge of the induced lens motion to facilitate sub-pixel
alignments of the multiple captures.

Challenges: Expending the applicability of the lens-shift OIS
modules to enhance the imaging resolution imposes two mainly
daunting challenges: (1) The existing OIS modules in smartphone
cameras cannot be controlled via programming (e.g., Android APIs).
One challenge is to devise the means to exercise control over the
OIS module without modifying the hardware. (2) After capturing
image sequences with lens motions controlled by the OIS module,
like existing MFSR methods, we need to develop a high-precision
image registration algorithm to facilitate the merge process for the
final super-resolution image. Thus, the other challenge involves
developing the means to incorporate prior lens motion information
controlled by the OIS module in the image registration process to
generate highly accurate sub-pixel alignment vectors.

Solutions: The aforementioned challenges are addressed as fol-
lows: (1) The OIS module relies on the onboard IMU (particularly,
the gyroscope) to sense camera shake. Inspired by acoustic injection
attacks on micro-electromechanical system (MEMS) sensors [43],
we alter the gyroscope readings via sinusoidal acoustic signals with
a resonance frequency close to that of the moving mass in the
MEMS gyroscope (see Fig. 1(b)). This makes it possible to control
the lens position and thereby sample multiple pixel patterns from
a fixed image sensor. (2) Obtaining the detailed OIS-controlled lens
shifting information can benefit the image registration process on
the multiple captured frames when the lens moves. However, lens
shifting is unavailable on smartphones except for the Google Pixel
series [9]; therefore, we first delved into the feedback control mech-
anism in the OIS to model the process of converting acoustic signals
into lens shifts. To ensure accurate image registration, we then de-
sign an optimization framework combining known lens shifting
information with coarse pixel shift information (obtained from the
optical flow method) to output high-precision pixel alignment vec-
tors in a sub-pixel space. Note that our proposed image registration
method can also correct the skew introduced by rolling shutter on
the offset frames, thus, even the scene is photographed when lens
continuously moving, the final super-resolution images generated
by our system are not affected by the rolling shutter.

We implement theOISSR prototype on a Xiaomi 10Ultra1, whose
main camera supports OIS. Extensive experiments are conducted
to assess the effectiveness of our proposed OISSR. One example

1The source code is available at: https://github.com/SolskyPan/OISSR

of our quadruple enhanced resolution results is shown in Fig. 1(c).
Comparing the top and bottom subfigures, our system can sharpen
the edges with more high-frequency details and eliminate the photo
noise effectively.

The main contributions of this work are as follows:
- We cleverly exploit the potential of the OIS techniques to facilitate
super-resolution imaging. To the best of our knowledge, our
proposed OISSR system is the first to use lens motion in the OIS
module to achieve a robust MFSR technology.

- We verify the linear relationship between lens shifting and the
signals used to control the OIS during the capture of multiple im-
ages. The lens shifting constraints can be leveraged in the optical
flow solution and implement the sub-pixel image registration.

- We develop an optimization framework that combines lens shift-
ing information and the coarse pixel shift to output high-precision
sub-pixel alignment vectors for image registration, and obtain the
high-performance super resolution images after merging multiple
registered frames.

2 RELATEDWORKS

2.1 Multi-frame-based Super-resolution

Compared to SISR methods which solely rely on one image prior,
MFSR was prevented with the aim to merge multiple low resolution
images of the same scene to reconstruct a higher resolution out-
put [42]. In recent works [32, 50], researchers have demonstrated
that MFSR is also applicable to the cameras by harnessing natural
hand tremors to introduce small offsets among multiple frames.
Note however that the performance of handheld MFSR methods is
determined primarily by the accuracy of image registration. High
frequency details beyond the limitations of the hardware can only
be extracted if the low-resolution images are aligned at the sub-
pixel level [2, 34, 35]. A number of image registration methods have
been applied to super-resolution reconstruction algorithms. The
Harris corner detector and SIFT descriptor schemes rely on image
features to compensate for an inability to obtain alignment vectors
on whole pixels [6]. Methods based on block matching [13] and
optical flow [5, 25] depend heavily on the quality of the raw images
and are unable to achieve sub-pixel alignment accuracy. Algorithms
using automatically computed segmentation maps [8] and tracking
algorithms [3, 10] are slow and prone to localization errors. Deep
learning-based image registration has also been implemented using
artificially synthesized training datasets [17, 37, 39, 45]; however,
the resulting trained models perform poorly in situations involving
(even slight) camera motion.

Hardware-based solutions have been developed to achieve sub-
pixels displacement in handheld-based MFSR. Related works [14,
18, 31] inspired mainstream camera manufacturers to apply pixel-
shift technology to commercial cameras (e.g., Sony A7R III, Fujifilm
GFX 100, Olympus OM-D E-M5 Mark III, and Panasonic Lumix
G9) [19, 33] to produce ultra-high-resolution images from a series of
captures, during which the sensor is physically shifted by a fraction
of a pixel-width. Note however that the highly specialized hardware
used to control the movement of the image sensor is limited only
to professional-grade cameras, which are not constrained by the
cost and space limitations of smartphone cameras. In the current
study, we develop a novel MFSR scheme for smartphone cameras,

https://github.com/SolskyPan/OISSR
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in which the OIS adjusts the lens positions based on the built-in
MEMS gyroscope readings.

2.2 Acoustic Injection on MEMS Sensors

MEMS gyroscopes measure Coriolis acceleration by tethering the
frame containing the resonating mass to a substrate using springs
mounted at 90◦ relative to the resonatingmotion. Note however that
these tiny mechanical structures are highly susceptible to acoustic
interference at their resonance frequencies (18𝑘𝐻𝑧 ∼ 30𝑘𝐻𝑧), such
that the sensing mass vibrates at the same frequency as the external
sinusoidal sound pressure waves [40]. Researchers have previously
exploited this phenomenon to attack MEMS gyroscopes. In [36],
researchers demonstrated a denial of service (DoS) attack using
resonant acoustic signals to facilitate the intentional crashing of
drones. In [41], researchers proposed output biasing and output
control attacks to compromise the integrity of MEMS accelerome-
ter readings. In [43], researchers achieved implicit control over a
variety of real-world systems via non-invasive attacks targeting em-
bedded inertial sensors. In [27] and [1], researchers demonstrated
the feasibility of using inertial sensors in smartphones to eaves-
drop on speech signals. Unlike the methods described above, the
system developed in this paper employs acoustic injection to alter
the readings from the built-in gyroscope in order to manipulate the
position of the lens in OIS-supported cameras.

3 PRELIMINARY ANALYSIS

In this section, we first describe the architecture of the lens-shift
OIS modules that are commonly found in smartphone cameras. We
then demonstrate the feasibility of utilizing acoustic injection to
control the motion of the lens, and delved into the detailed working
principle of OIS and examine the conversion function from acoustic
signals to lens motion information.

3.1 OIS Architecture Description

In such lens-shift OIS systems, as shown in Fig. 2(a), the onboard
IMU sensor (i.e., accelerometer and gyroscope) senses the camera
shake during image acquisition, and the voice coil motor (VCM)
actuator adjusts the lens position to compensate the camera shake
while the image sensor is fixed to the bottom of the camera module.
Note that camera shake induces both translational and rotational
movements with six DOFs (e.g., on the 𝑥 − /𝑦 − /𝑧−axis, and Roll-
/Pitch-/Yaw-axis respectively). Of all movements, translational and
rotational movements (along the 𝑥 and 𝑦 axes) induce more image
blurring that do motions along 𝑧 axis [21]. This can be attributed
to the fact that the inertial forces associated with snapping a photo
are generally not along the 𝑧 axis, such that translational and ro-
tational movement about 𝑧 axis does not alter the imaging point
on the sensor plane. Thus, the existing OIS technologies on the
smartphone camera usually only consider the 4-DOF disturbances
(along translational 𝑥 − /𝑦−axis and rotational Roll-/Pitch-axis) to
derive the control objectives of the lens holder.

It is no doubt that the OIS module can compensate for camera
translational displacement by moving the lens at the appropriate
distance in opposite directions; however, the OIS actuator should
also move the lens in translation to correct the camera rotational
displacement. As shown in Fig. 2(b), after the offset angles ®\ is

(a) Architecture of a lens-shift OIS camera

(b) Block diagram of control-loop in the OIS module

Figure 2: Working principle of the lens-shift OIS module

calculated from the gyroscope readings ®𝑤 , the OIS controller algo-
rithm is utilized to calculate the translational compensation vector
®ℎ, and VCM actuator then adjusts the lens position to compensate
for involuntary jitter. The entire lens control block is implemented
within a control-loop where feedback pertaining to lens movement
is provided by a Hall sensor, that means the VCM actuator can al-
ways adjust the lens to the certain position according to the certain
offset angle displacement. [30] presents the linear model linking
Δ\ and Δℎ when the camera shake is in the small range (Δ\ ≈ 0◦),
and the formula is shown as: Δℎ = 𝑍𝑐Δ\ , where 𝑍𝑐 is a constant.

3.2 Controlling Lens via Acoustic Injection

The working principle of OIS in the above section inspires us to use
the gyroscope/accelerometer to control lens motion. In Sec. 2.2, we
discuss related works that utilize acoustic injection to alter the read-
ings of MEMS sensors. In the current study, we sought to control
the MEMS gyroscope readings for the reason that: the acoustic sinu-
soidal signals that can control gyroscope readings should be close
to resonance frequency of the sensing mass, which mainly ranges
from 18𝐾𝐻𝑧 to 30𝐾𝐻𝑧 [11] and is friendly and inaudible to human
ears. By contrast, the acoustic signals required to affect accelerome-
ters would be well within the audible range (2𝐾𝐻𝑧 ∼ 10𝐾𝐻𝑧) [41],
which brings acoustic noise to the human ear.

A Xiaomi 10Ultra is used as a test device here. We first identify
the resonance frequency (i.e., around 18.79𝐾𝐻𝑧) of the built-in
MEMS gyroscope via frequency sweeping [41]. We then use the
built-in speaker to play a .wav file of a sinusoidal acoustic signals
with the same resonance frequency of the MEMS gyroscope, and
the signals are shown in Fig. 3(a). Android APIs are used to collect
6-axis IMU readings at a sampling rate of 200 𝐻𝑧, and the offset
angles calculated from the 3-axis gyroscope readings (actual angular
velocity) as follows: \ (𝑡+ △ 𝑡) = \ (𝑡)+𝜔 [𝑡] △ 𝑡 , where the△ 𝑡 = 1

𝐹𝑆
is the interval between two samples, and 𝜔 [𝑡] is the gyroscope
reading in the current timestamp. The resulting calculated offset
angles are shown in Fig. 3(b), and the lens position is then controlled
by the OIS module with these offset angles.

3.3 Conversation from Lens Shift to Pixel Shift

In this study, we impose lens shifts to enable pixel shift sampling
frommultiple frames of the same scene. Thus, we need to model the
relationship between the lens shift and the pixel shift. We simply
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Figure 3: Corresponding results with a stationary Xiaomi

10 Ultra smartphone (fixed on the tripod) under the effects

of acoustic signals (start at 0.5 seconds) with frequencies of

18795𝐻𝑧 that played by the built-in speaker

the mobile phone camera into a pinhole camera model [48] as
shown in Fig. 4, and move the lens from Position 1 to Position 2 with
displacement △ ℎ in one axis, such that the imaging of light source
𝐴 moved from pixel 𝐵 to pixel 𝐵′ with displacement △ 𝑑 . According
to the similar triangles, we can obtain pixel shift △ 𝑑 of light source
𝐴 as follows:

△ ℎ

△ 𝑑
=

𝑍𝑎

𝑍𝑎 + 𝑓 (1)

where 𝑍𝑎 is the depth of light source 𝐴, and 𝑓 is the focal length of
the mobile phone camera. Thus, when capturing multiple frames
from the same scene under the effects of lens shift, the depth of the
light source remains the same in all images, which means that △𝑑△ℎ
is fixed for each light source in each image pair.

To verify the correctness of the linear model between the lens
shift and the pixel shift, we fix the Xiaomi 10 Ultra on the tripod
and synchronously capture frames at 30 frames per second of a
standard camera calibration checkerboard picture with the same
acoustic injection used in Fig. 3(a). We select one corner point
in the checkerboard as the feature point, and calculate the pixel
information of this feature point in the entire captured frames. The
relative pixel displacements of the selected feature point are shown
in Fig. 3(c), it is possible to derive the relationship between the
offset angles (i.e., lens shift) Δ\ and the pixel shift information Δ𝑇
as follows:

Δ𝑇𝑥 = 𝑎𝑥Δ\𝑥 , 𝑎𝑥 > 0
Δ𝑇𝑦 = 𝑎𝑦Δ\𝑦, 𝑎𝑦 > 0

(2)

where 𝑎𝑥 , 𝑎𝑦 are the constant coefficients of the OIS control model.

Figure 4: Relationship between lens shift and pixel shift.

To summarize, after we obtain gyroscope readings transmitted
to the OIS module from timestamp 𝑡1 to 𝑡2 (take the Roll-axis as an
example), we can derive lens shift information (along the x-axis)
for the OIS module, as follows:

△ 𝑇𝑥
𝑡2
𝑡1
= 𝑎𝑥 (△ \𝑥𝑡2𝑡1 ) = 𝑎𝑥 (

𝑡2∑︁
𝑡=𝑡1

𝜔𝑥 [𝑡] △ 𝑡) (3)

The same procedure would be followed for lens shifts along the
𝑦−axis using \𝑦axis gyroscope readings. In this manner, we obtain
a model by which to convert the gyroscope readings into the pixel
shift information of the multiple captures during the lens is moving
controlled by the OIS.

4 SUPER RESOLUTION ALGORITHM

In this paper, we sought to utilize the precise and regular OIS-
controlled lens motion in the place of the rough handheld move-
ment, and propose a multi-frame based super resolution system
that is illustrated in Fig. 5. We will describe the detailed techniques
in the following subsections.

4.1 Multiple Frames Acquisition

We first capture a reference frame using the default parameters (e.g.,
auto-exposure, auto-focus, auto-white balance) with the lens in the
zero-shift position (i.e., unperturbed by acoustic injection). The
system then utilize the built-in speaker plays the above-mentioned
.wav file, while simultaneously capturing multiple RAW frames
(.dng format) via the moving lens. During the capture of these
frames, we also record a timestamp of each frame synchronously
with the 3-axis gyroscope readings.

Note that the multiple frames could be captured using long ex-
posure compensation under low-light conditions, and the long ex-
posures would increase the likelihood of blurring when capturing
images with the moving lens. Thus, we sought to minimize motion
blur by adjusting the speed at which lens is moved in accordance
with the exposure parameter (e.g., SENSOR_EXPOSURE_TIME in An-
droid) by altering the frequency of the acoustic injection signals
(see the supplementary video).

4.2 Optimizing Sub-pixel Alignment

Image registration refers to the process of estimating per-pixel
shifts between image pairs. In this study, we model the image regis-
tration as an optimization problem, and our optimization objective
is the pixel shift information of each the same light source when
registering the offset frame to the reference frame. Thus, we sought
to optimize pixel alignment in each of the offset frames according
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Figure 5: Overview of our proposed OISSR that is a robust super resolution system that leverages the OIS-controlled lens motion

to the reference image using a priori lens shift information in con-
junction with a penalty term (△𝑑△ℎ is fixed) within the optimization
function. Generally, optimization involves a defined trade-off be-
tween a visual term and a motion term, which imposes priors on
the plausibility of lens shift. Note that the visual term is meant to
facilitate the alignment of visually similar regions of the image. We
also add a smoothing term in the final energy function to enhance
the quality of the final alignment results. For each pixel (𝑝) in the
image, we minimize the energy function using a visual term, a
motion term, and a smoothing term for a given series of captured
LR images.

𝐸 (𝑝) = 𝐸𝑣𝑖𝑠𝑢𝑎𝑙 (𝑝) + 𝛼𝐸𝑚𝑜𝑡𝑖𝑜𝑛 (𝑝) + 𝛽𝐸𝑠𝑚𝑜𝑜𝑡ℎ (𝑝) (4)

Here, the weight 𝛼 and 𝛽 balance the relative significance of the
three terms, and are set to 1.5(for 𝛼) and 3(for 𝛽) in all our experi-
ments, and Ω is the image plane.

Visual term. A visual term is defined to facilitate the alignment
of visually similar regions in the image, wherein visual alignment
is estimated from three iterations of the Lucas-Kanade optical flow
method [25]. Here, we denote the offset frame as 𝐾𝑖 (𝑖 ∈ [1, 2, ..𝑘])
and a reference frame as (𝐾0). For each pixel 𝑝 in offset frame
𝐾𝑖 , we denote coarse pixel shifting information obtained from the
optical flow method as (𝑢𝑖 (𝑝), 𝑣𝑖 (𝑝)), and our optimized target (the
high-precision pixel alignment) is defined as 𝑢𝑖 (𝑝), 𝑣𝑖 (𝑝):

𝐸𝑣𝑖𝑠𝑢𝑎𝑙 (𝑝)𝑖 = (𝑢𝑖 (𝑝) − 𝑢𝑖 (𝑝))2 + (𝑣𝑖 (𝑝) − 𝑣𝑖 (𝑝))2 (5)

Thus, the entire visual term can be denoted as follows:

𝐸𝑣𝑖𝑠𝑢𝑎𝑙 (𝑝) =
𝑘∑︁
𝑖=1

𝐸𝑣𝑖𝑠𝑢𝑎𝑙 (𝑝)𝑖 (6)

Motion term. As shown in Fig. 4, we obtain the following for-
mula for pixel 𝑝 in each pair of offset-reference images:

𝑢1 (𝑝)
△ ℎ𝑥 (1)

=
𝑢2 (𝑝)
△ ℎ𝑥 (2)

= · · · = 𝑢𝑘 (𝑝)
△ ℎ𝑥 (𝑘)

, 𝑝 ∈ Ω (7)

𝑣1 (𝑝)
△ ℎ𝑦 (1)

=
𝑣2 (𝑝)
△ ℎ𝑦 (2)

= · · · = 𝑣𝑘 (𝑝)
△ ℎ𝑦 (𝑘)

, 𝑝 ∈ Ω (8)

where △ ℎ𝑥 (𝑖) and △ ℎ𝑦 (𝑖) respectively refer to mean lens shift
information (i.e., offset angles calculated from the gyroscope read-
ings) along the 𝑥− and𝑦−axis for the stated time of capturing frame
𝑖 , where 𝑢𝑖 (𝑝)/𝑣𝑖 (𝑝) indicates △ 𝑑 in Fig. 4.

We define the motion term between two offset-reference image
pairs as ((𝐾𝑚 , 𝐾0), and (𝐾𝑛 , 𝐾0)). We record the timestamp indicat-
ing the start in capturing the𝑚𝑡ℎ/𝑛𝑡ℎ offset frame as 𝑡𝑚/𝑡𝑛 , and
the reference frame timestamp as 𝑡0. With the OIS-controlled lens
motion model in Eq. 3, we can result in the following:

𝐸𝑚𝑜𝑡𝑖𝑜𝑛 (𝑝)𝑚,𝑛 = ( 𝑢𝑚 (𝑝)∑𝑡𝑚
𝑡=𝑡0

𝜔𝑥 [𝑡] △ 𝑡
− 𝑢𝑛∑𝑡𝑛

𝑡=𝑡0
𝜔𝑥 [𝑡] △ 𝑡

)2+

( 𝑣𝑚∑𝑡𝑚
𝑡=𝑡0

𝜔𝑦 [𝑡] △ 𝑡
− 𝑣𝑛∑𝑡𝑛

𝑡=𝑡0
𝜔𝑦 [𝑡] △ 𝑡

)2
(9)

Thus, the entire motion term for each pixel 𝑝 can be noted as
follows:

𝐸𝑚𝑜𝑡𝑖𝑜𝑛 (𝑝) =
𝑘∑︁

𝑚=1

𝑘∑︁
𝑛=1,𝑛≠𝑚

𝐸𝑚𝑜𝑡𝑖𝑜𝑛 (𝑝)𝑚,𝑛 (10)

Smoothing term. The smoothing term in offset frame 𝐾𝑖 is
denoted as follows:

𝐸𝑠𝑚𝑜𝑜𝑡ℎ (𝑝)𝑖 = 𝜏 (𝑝) ( |∇𝑢𝑖 (𝑝) |Y + |∇𝑣𝑖 (𝑝) |Y ) (11)

where | � |Y refers to the Huber norm with a threshold of Y; ∇𝑢𝑖 (𝑝)
is the gradient adaptive weight of the pixel shift which imposes
a strong penalty on the featureless area, and ∇𝑢 (𝑝) is defined as
∇𝑢 (𝑝) = 𝑒−Z |∇𝐼𝑥 (𝑝) |[ , where ∇𝐼𝑥 (𝑝) is the image 𝑥−axis gradient
at pixel 𝑝 , and ∇𝑣 (𝑝) is similarly defined as ∇𝑣 (𝑝) = 𝑒−Z |∇𝐼𝑦 (𝑝) |[ .
We fixed the parameters Z = 2.8, [ = 0.6 in all our experiments.
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Thus, the whole smooth term can be denoted as follows:

𝐸𝑠𝑚𝑜𝑜𝑡ℎ (𝑝) =
𝑘∑︁
𝑖=1

𝐸𝑠𝑚𝑜𝑜𝑡ℎ (𝑝)𝑖 (12)

4.3 Merging Multiple Registered Frames

Producing the final output image involves processing all registered
frames sequentially for every pixel in the output image by evaluat-
ing local contributions to the red, green, and blue color channels
from separate input frames. In accordance with the merging process
described in [50], we utilized kernel regression to estimate the local
contribution of each frame to the super-resolution results. For each
color channel, the local contribution can be formulated as follows:

𝐶 (𝑥,𝑦) =
∑𝑘+1
𝑖=1

∑
𝑗 𝑐𝑖, 𝑗 ∗𝑤𝑖, 𝑗∑𝑘+1

𝑖=1
∑

𝑗 𝑤𝑖, 𝑗

(13)

where (𝑥,𝑦) are the pixel 2D coordinates of the 2-scale upsampling
image grid, the sum

∑𝑘+1
𝑖=1 obtained over all contributing frames (𝑘

offset frames and one reference frame),
∑

𝑗 is a sum over samples
within a local neighborhood (in our case 3×3) in the low-resolution
frames, i.e., the samples whose coordinates are in the (⌊ 𝑥2 ⌋±3, ⌊

𝑦
2 ⌋±

3) after image registration, 𝑐𝑖, 𝑗 denotes the color value of a pixel at
given frame 𝑖 and sample 𝑗 . For each sample 𝑗 whose the original
coordinate is (𝑥 𝑗 , 𝑦 𝑗 ) before image registration and its alignment
vector is (𝑢 𝑗 , 𝑣 𝑗 ), we utilize a 2D normalized anisotropic Gaussian
RBF to calculate the local sample weight𝑤𝑖, 𝑗 ,

𝑤𝑖, 𝑗 = 𝑒
− 1

2𝑑
𝑇
𝑗
Ψ−1
𝑗 𝑑 𝑗 (14)

where Ψ is the kernel covariance matrix and 𝑑 𝑗 is the offset vector
of sample 𝑗 to the output upsampling pixel grid, i.e., 𝑑 𝑗 = [2(𝑥 𝑗 −
𝑢 𝑗 ) −𝑥, 2(𝑦 𝑗 −𝑣 𝑗 ) −𝑦]𝑇 . To estimate local information pertaining to
the strength and direction of gradients, we apply gradient structure
tensor analysis in each frame as a kernel covariance matrix:

Ψ𝑗 =

[
∇𝐼2𝑥 𝑗

∇𝐼𝑥 𝑗
𝐼𝑦 𝑗

∇𝐼𝑥 𝑗
𝐼𝑦 𝑗

∇𝐼2𝑦 𝑗

]
(15)

where ∇𝐼𝑥 𝑗
and ∇𝐼𝑦 𝑗

refer to local gradients in the horizontal and
vertical directions in the reference image. The image gradients
are computed using the finite forward difference method in the
luminance channel within a small 3 × 3 color window.

5 EVALUATION

5.1 Methodology Evaluation

5.1.1 Pixel Alignment Accuracy. We first sought to verify the effec-
tiveness of the proposed image registration algorithm OISFlow. We
select a number of existing state-of-the-art optical flow methods
for comparison. Each image registration method is applied to each
image pair to derive pixel shift information. Note however that
we are unable to obtain ground truth values pertaining to pixel
shift during image capture. Thus, in the absence of ground truth
data, we employ a forward-backward consistency scheme [28] to
compare the performance of the various image registration algo-
rithms [15, 17, 25, 37, 39]. Specifically, we utilize multiple frames
(e.g., 𝑓0, 𝑓1, and 𝑓2) to create sequences (e.g., 𝑓0 − 𝑓1 − 𝑓2 − 𝑓0) and
then measured the degree of consistency in estimates of optical
scene flow between the same pair of frames with the order reversed

(e.g., 𝑓0 − 𝑓1 − 𝑓2 and 𝑓2 − 𝑓0). Ideally, the pixel alignment vectors
should have the same magnitude but opposite orientation. And we
can add the whole alignment vectors of each image pair in the im-
age sequences, and calculate the magnitude of the final alignment
vectors as the metrics score. The results are shown in the Table 1.

Table 1: Comparison of image registration algorithms, where

a lower score indicates better performance

ALG HS
[15]

LK
[25]

Flow-
Net2 [17]

PWC-
Net [37]

RAFT
[39]

LK w/
lens

OIS-
Flow

Score 4.2 4.1 3.9 3.5 3.1 1.5 1.3

These results indicate that our proposed OISFlow achieves the
best overall performance. Note that due to the very slight move-
ment of the lens, it is difficult to obtain satisfactory and robust
results based solely on visual computation, even when using a
SOTA optical flow method (e.g., RAFT) based on deep learning. The
proposed image registration algorithm takes into account all of the
information pertaining to lens shift in the capture of offset frames.
The proposed algorithm also imposes a strong limitation on the
optimization framework to ensure high-precision pixel alignment.
Also, adding a smoothing term that adaptively weights the neigh-
bors in the extended region can improve the optical flow estimation
accuracy and ensure the robustness of our proposed OISFlow.

To verify the importance of image registration in multi-frame
super-resolution, we merge the registered images (here we select
six frames ) using a variety of pixel alignment algorithms and then
compare the super-resolution results. The RAW images (.dng for-
mat) with a resolution of 4080 × 3072 were taken by the Xiaomi
10Ultra camera. We crop a subfigure with 300 × 300 resolution
at the specific position on the reference frame as a HR ground
truth. We also crop the subfigures with the same resolution and
specific position and downsize them to 150 × 150 pixels on the
entire frames as the multiple LR frames, i.e., a reference frame and
six offset frames. As can be seen in Fig. 6(a), due to the fact that
the scene was taken particularly far away, many high frequency
details cannot be properly represented in the LR frames, such as
the presence of colored noise on the steps. This noise results in
ignored errors in the alignment vector for each reference- offset
image pair when using traditional optical flow methods that only
rely on the RGB information. The super-resolution images merged
by the multiple registered LR frames with different image regis-
tration methods are shown in Fig. 6(c). We find that our proposed
OISFlow performs better than other optical flow methods with the
less misalignment, and the merged result based on our proposed
pixel alignment method OISFlow makes the high-frequency details
become visible. Overall, we determine that the super-resolution
images obtained by merging frames with sub-pixel alignment are
superior in terms of visual quality.

5.1.2 Image Quality and the Number of Merged Frames. From a
theoretical perspective, increasing the number of frames should
increase the amount of information in an image; however, the
proposed image registration scheme is based on an optimization
framework that calculates pixel alignment vectors for the entire
frames at the same time. Thus, including an excessive number of
frames could not lead to any improvement in image registration
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(a) Reference image with 4080 × 3072 pixels
captured by the Xiaomi 10Ultra’s camera

(b) The leftmost is reference LR frame (cropped and downsampled as 150 × 150 pixels). The middle four are the offset frame
examples. THe rightmost is HR ground truth frame (cropped as 300 × 300 pixels)

(c) Quality of merged super-resolution images is proportional to pixel alignment accuracy

(d) Influence of the number of merged LR frames on quality of super-resolution images

Figure 6: Methodology evaluation results of our proposed OISSR. We advise the readers to zoom in these images for comparison

performance with a corresponding similar quality of the super-
resolution results. Thus, we vary the number of offset frames from
1 to 10. Part of the merged results is shown in Fig. 6(d). We find that
the quality of the super-resolution image, in terms of denoising
and high-frequency details, hardly improves when more than eight
offset frames are used. In the following experiments to compare
the overall performance, we use six offset frames and one reference
frame to generate the super-resolution image.

5.2 Comparison of Super-resolution Systems

The proposed algorithm is compared with three representative SISR
solutions and two representative MFSR solution:

• Cubic Interpolation [46], a traditional interpolation method
that refers to the bicubic interpolation in the neighborhood
of 4 × 4 pixels to enable upsampling.

• LAPAR [23] and SRFlow [26] are two latest deep learning
based SISR technologies used to super-resolution imaging,
i.e., image denoising and JPEG image deblocking.

• MuCAN [22], BasicVSR [7], and COMISR [24] are deep learn-
ing based video super-resolution technology, that utilizes
multiple low-resolution frames to generate a high-resolution
prediction of the reference frame.

• DeepRep is a novel deep-learning based MFSR method for
burst images, that takes multiple noisy RAW images as input
and generates a denoised and super-resolution RGB image.

• Handheldmulti-frame super-resolution [50] uses hand tremors
to introduce small offsets during the capture of multiple raw

Table 2: PSNR [47] and SSIM [49] comparisons with selected

four super-resolution systems and our proposed OISSR.

Cubic LAPAR SRFlow MuCAN BasicVSR
PSNR 30.168 33.011 32.28 33.112 35.387
SSIM 0.911 0.924 0.931 0.944 0.956

COMISR DeepRep Handheld Ours
PSNR 34.312 32.112 34.187 36.49

SSIM 0.941 0.918 0.936 0.959

frames to facilitate merging as a super-resolution image. We
used the implementation of this work in [20].

As shown in Fig. 7, cubic interpolation produced the worst over-
all results, as indicated by the inability to fill in missing pixel in-
formation. The LAPAR and SRFlow methods produce images of
higher quality; however, these deep-learning based SISR methods
sometimes are unable to add the realistic details and prevent the
formation artifacts, especially in the low-frequency areas. After
comparing the last row of Fig. 7 in detail, we observe that the LA-
PAR seriously distorts the steps, and the SRFlow generates multiple
artifacts in the trunk. The deep learning based video SR methods,
such as MuCAN, BasicVSR, and COMISR, also suffer from the un-
stable performance and sometimes generate the errors and artifacts
in the generated SR results. The SR images generated by DeepRep
have multiple grainy artifacts and chromatic aberrations. For chro-
matic aberrations, one explanation is that DeepRep directly uses
RAW images as input for the burst SR task and may have domain
shift problems, e.g., our data have a different distribution of RAW
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(a) LR (cropped) (b) HR GT (c) LAPAR [23] (d) SRFlow [26] (e) MuCAN [22] (f) BasicVSR [7] (g) COMISR [24] (h) DeepRep [4] (i) Handheld [50] (j) Ours

Figure 7: End-to-end comparison of proposed OISSR system and other super-resolution systems from the capture of low-

resolution images to the generation of super-resolution images. Please zoom in these images for comparison

values than their training dataset because the RAW images were
captured from different CMOS imaging sensors. Handheld MFSR
provided pixel information without any artifacts; however, it still
generated blurring in high frequency regions and edges due to a
lack of accuracy in pixel alignment. Our proposed OISSR system
is more robust against the various shooting scenes, and it can gen-
erate super-resolution images with more realistic high-frequency
details, but with less CMOS imaging noise.

The corresponding quality analysis of our algorithm on the col-
lected datasets (the original images are regarded as ground-truth,
and two-time downsampling are taken as input of the systems)
is shown in Table 2. We also observe that our proposed system
can obtain the best imaging performance among the related SISR,
MFSR and video-based SR methods. Note that in handheld shoot-
ing mode, MFSR can use information pertaining to camera pose
(inferred from gyroscope readings) to improve image registration
performance. Nonetheless, the built-in gyroscope’s low precision

on sensing the slight and irregular hand shake greatly limits the
accuracy of pose-related data.

6 CONCLUSION

In this paper, we present a robust multi-frame super-resolution sys-
tem for OIS-supported smartphone cameras. The proposed OISSR
system controls lens motion via acoustic injection to facilitate high-
precision sub-pixel alignment by combining lens shift information
with pixel shift information obtained using the optical flow method.
In experiments, our proposed OISSR can increase image resolution
by 4 times the pixel count, and extensive experiments demonstrate
the robust performance of OISSR in a variety of scenes.
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